Saturday, August 31, 2013
Pulse Width Modulation DC Motor Control Circuit
Description
Parts
Notes
Often, people attempt to control DC motors with a variable resistor or variable resistor connected to a transistor. While the latter approach works well, it generates heat and hence wastes power. This simple pulse width modulation DC motor control eliminates these problems. It controls the motor speed by driving the motor with short pulses. These pulses vary in duration to change the speed of the motor. The longer the pulses, the faster the motor turns, and vice versa.
Circuit DiagramParts
- R1 1 Meg 1/4W Resistor
- R2 100K Pot
- C1 0.1uF 25V Ceramic Disc Capacitor
- C2 0.01uF 25V Ceramic Disc Capacitor
- Q1 IRF511 MOSFET or IRF620
- U1 4011 CMOS NAND Gate
- S1 DPDT Switch
- M1 Motor (See Notes)
- MISC Case, Board, Heatsink, Knob For R2, Socket For U1
- R2 adjusts the speed of the oscillator and therefore the speed of M1.
- M1 can be any DC motor that operates from 6V and does not draw more than the maximum current of Q1. The voltage can be increased by connecting the higher voltage to the switch instead of the 6V that powers the oscillator. Be sure not to exceed the power rating of Q1 if you do this.
- Q1 will need a heatsink.
- Q1 in the parts list can handle a maximum of 5A. Use the IRF620 for 6A, if you need any higher.
Thursday, August 15, 2013
Simple Cold Cathode Fluorescent Lamp Supply Circuit Diagram
Simple Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram. For back-lit LCD displays, this supply will drive a lamp. LT1072 drives Ql and Q2, and a sine wave appears across CI. LI is a transformer that steps up this voltage to about 1400 V. Dl and D2 detect lamp current and form a feedback loop to the LT1072 to control lamp brightness. C1 = MUST BE A LOW LOSS CAPACITOR. METALIZED POLYCARB WIMA FPK 2 (GERMAN) RECOMMENDED. L1 = SUMIDA 6345-020 OR COILTRONIX CTX110092-1. PIN NUMBERS SHOWN FOR COILTRONIX UNIT. L2 = COILTRONIX CTX300-4 * = 1 % FILM RESISTOR.
Cold-Cathode Fluorescent-Lamp Supply Circuit Diagram
Tuesday, August 13, 2013
1992 BMW 325i Convertible Electrical Troubleshooting Manual Electrical Troubleshooting Wiring Diagram Cable Harness Routing and Electrical Schematics
This electrical troubleshooting manual is divided into following sections: Index, How to Use the Wiring Diagram, Wire Size and Conversion Chart, Symbols, Systematic Troubleshooting, Connectors Views, Power Distribution Box, Fuse Data, Component Location Chart and Views, and Splice Location Views. Further breakdown, this manual covers topics on operation description and systematic troubleshooting for power distribution system, charge and starting system, ABS, Brake Warning System, Power Mirrors, Central Locking, Power Windows, electronics fuel injection system, SRS, Seats, Electro-Mechanical Convertible Top, Body Electrical System, Wiper and Washer, Instrument Cluster, etc.
All wirings and the wiring between components are shown exactly as it exists in the vehicle; but, the wiring is not drawn to scale. Wiring inside complicated components has been simplified to solid state label designates electronic components to help you in understanding the electrical operation,
A complete troubleshooting manual for the 1992 BMW 325i Convertible Electrical Troubleshooting Manual is here – 142 pages of PDF file.
Labels:
1992,
325i,
and,
bmw,
cable,
convertible,
diagram,
electrical,
harness,
manual,
routing,
schematics,
troubleshooting,
wiring
Sunday, August 11, 2013
Fuse Box BMW Z3 Plug in 1996 Diagram
Fuse Box BMW Z3 Plug in 1996 Diagram - Here are new post for Fuse Box BMW Z3 Plug in 1996 Diagram.
Fuse Panel Layout Diagram Parts: high beam light relay, fuel pump relay, crash control module, auxiliary fuse box.
More...
Fuse Box BMW Z3 Plug in 1996 Diagram
Fuse Panel Layout Diagram Parts: high beam light relay, fuel pump relay, crash control module, auxiliary fuse box.
Friday, August 9, 2013
Wiring Diagram
Rj45 Wiring Diagram T568a.
Rj45 Socket Wiring Reviews And Photos.
Welcome To Tutor Piggy Blogspot Com Rj45 Wiring Diagram.
Rj45 Cat 5 Wiring Diagram For Straight Through Cable.
Wiring Diagram.
Order Of The Bath Churchtech.
Wiring Diagram.
How Hard Is It To Make Your Own Cat 6 Cables Iphone And Ipad Forums.
How To Make Your Own Network Cables Twisted Pair Network Cables.
Rj45 Cat6 Wiring Diagram Submited Images Pic 2 Fly.
Wednesday, August 7, 2013
Invisible Broken Wire Detector
Portable loads such as video cameras, halogen flood lights, electrical irons, hand drillers, grinders, and cutters are powered by connecting long 2- or 3-core cables to the mains plug. Due to prolonged usage, the power cord wires are subjected to mechanical strain and stress, which can lead to internal snapping of wires at any point. In such a case most people go for replacing the core/cable, as finding the exact location of a broken wire is difficult.
In 3-core cables, it appears almost impossible to detect a broken wire and the point of break without physically disturbing all the three wires that are concealed in a PVC jacket. The circuit presented here can easily and quickly detect a broken/faulty wire and its breakage point in 1-core, 2-core, and 3-core cables without physically disturbing wires. It is built using hex inverter CMOS CD4069.
Gates N3 and N4 are used as a pulse generator that oscillates at around 1000 Hz in audio range. The frequency is determined by timing components comprising resistors R3 and R4, and capacitor C1. Gates N1 and N2 are used to sense the presence of 230V AC field around the live wire and buffer weak AC voltage picked from the test probe. The voltage at output pin 10 of gate N2 can enable or inhibit the oscillator circuit.
When the test probe is away from any high-voltage AC field, output pin 10 of gate N2 remains low. As a result, diode D3 conducts and inhibits the oscillator circuit from oscillating. Simultaneously, the output of gate N3 at pin 6 goes ‘low’ to cut off transistor T1. As a result, LED1 goes off. When the test probe is moved closer to 230V AC, 50Hz mains live wire, during every positive half-cycle, output pin 10 of gate N2 goes high.
Thus during every positive half-cycle of the mains frequency, the oscillator circuit is allowed to oscillate at around 1 kHz, making red LED (LED1) to blink. (Due to the persistence of vision, the LED appears to be glowing continuously.) This type of blinking reduces consumption of the current from button cells used for power supply. A 3V DC supply is sufficient for powering the whole circuit.
Circuit diagram:
In 3-core cables, it appears almost impossible to detect a broken wire and the point of break without physically disturbing all the three wires that are concealed in a PVC jacket. The circuit presented here can easily and quickly detect a broken/faulty wire and its breakage point in 1-core, 2-core, and 3-core cables without physically disturbing wires. It is built using hex inverter CMOS CD4069.
Gates N3 and N4 are used as a pulse generator that oscillates at around 1000 Hz in audio range. The frequency is determined by timing components comprising resistors R3 and R4, and capacitor C1. Gates N1 and N2 are used to sense the presence of 230V AC field around the live wire and buffer weak AC voltage picked from the test probe. The voltage at output pin 10 of gate N2 can enable or inhibit the oscillator circuit.
When the test probe is away from any high-voltage AC field, output pin 10 of gate N2 remains low. As a result, diode D3 conducts and inhibits the oscillator circuit from oscillating. Simultaneously, the output of gate N3 at pin 6 goes ‘low’ to cut off transistor T1. As a result, LED1 goes off. When the test probe is moved closer to 230V AC, 50Hz mains live wire, during every positive half-cycle, output pin 10 of gate N2 goes high.
Thus during every positive half-cycle of the mains frequency, the oscillator circuit is allowed to oscillate at around 1 kHz, making red LED (LED1) to blink. (Due to the persistence of vision, the LED appears to be glowing continuously.) This type of blinking reduces consumption of the current from button cells used for power supply. A 3V DC supply is sufficient for powering the whole circuit.
Circuit diagram:
Invisible Broken Wire Detector Circuit Diagram
AG13 or LR44 type button cells, which are also used inside laser pointers or in LED-based continuity testers, can be used for the circuit. The circuit consumes 3 mA during the sensing of AC mains voltage. For audio-visual indication, one may use a small buzzer (usually built inside quartz alarm time pieces) in parallel with one small (3mm) LCD in place of LED1 and resistor R5. In such a case, the current consumption of the circuit will be around 7 mA.
Alternatively, one may use two 1.5V R6- or AA-type batteries. Using this gadget, one can also quickly detect fused small filament bulbs in serial loops powered by 230V AC mains.
The whole circuit can be accommodated in a small PVC pipe and used as a handy broken-wire detector. Before detecting broken faulty wires, take out any connected load and find out the faulty wire first by continuity method using any multimeter or continuity tester.
Then connect 230V AC mains live wire at one end of the faulty wire, leaving the other end free. Connect neutral terminal of the mains AC to the remaining wires at one end. However, if any of the remaining wires is also found to be faulty, then both ends of these wires are connected to neutral. For single-wire testing, connecting neutral only to the live wire at one end is sufficient to detect the breakage point.
In this circuit, a 5cm (2-inch) long, thick, single-strand wire is used as the test probe. To detect the breakage point, turn on switch S1 and slowly move the test probe closer to the faulty wire, beginning with the input point of the live wire and proceeding towards its other end. LED1 starts glowing during the presence of AC voltage in faulty wire. When the breakage point is reached, LED1 immediately extinguishes due to the non-availability of mains AC voltage.
The point where LED1 is turned off is the exact broken-wire point. While testing a broken 3-core rounded cable wire, bend the probe’s edge in the form of ‘J’ to increase its sensitivity and move the bent edge of the test probe closer over the cable. During testing avoid any strong electric field close to the circuit to avoid false detection.
Author: K. Udhaya Kumaran
Monday, August 5, 2013
Simple Solar LED Lantern
This solar LED lantern can be used as an emergency light. Its 6V battery can be charged either from 230V, 50Hz AC mains or a 12V, 10W solar panel. Two LED indicators have been provided—red LED (LED1) indicates battery charging and green LED (LED2) indicates fully-charged battery.
You can choose to charge the battery either from the mains power or the solar panel by using the single-pole, double-throw (SPDT) switch. Capacitor C1 (1000µF, 35V) removes ripples from the power supply and regulator IC LM7809 (IC1) provides regulated 9V DC to the emitter of pnp transistor T1 (TIP127/BD140) and pin 7 of op-amp IC CA3140 (IC2), which is configured in comparator mode.
The reference voltage of 6.3V at pin 2 of IC2 is obtained through the combination of resistor R7 (1-kilo-ohm) and zener diode ZD1 (6.3V). The comparator controls charging of the battery. Pin 3 of IC2 is connected to the positive terminal of the battery to be charged through resistor R5. When the battery is fully charged, it stops charging and the green LED (LED2) glows to indicate the full-charge status.
When the battery voltage is low, diode D1 (1N4007) forward-biases and the battery connects (through resistor R3) to the collector of T1 for charging (indicated by the glowing of red LED1). Three high-wattage white LEDs (LED3 through LED5), such as KLHP3433 from Kwality Photonics, are used for lighting. These are switched on using switch S3.
You can choose to charge the battery either from the mains power or the solar panel by using the single-pole, double-throw (SPDT) switch. Capacitor C1 (1000µF, 35V) removes ripples from the power supply and regulator IC LM7809 (IC1) provides regulated 9V DC to the emitter of pnp transistor T1 (TIP127/BD140) and pin 7 of op-amp IC CA3140 (IC2), which is configured in comparator mode.
When the battery voltage is low, diode D1 (1N4007) forward-biases and the battery connects (through resistor R3) to the collector of T1 for charging (indicated by the glowing of red LED1). Three high-wattage white LEDs (LED3 through LED5), such as KLHP3433 from Kwality Photonics, are used for lighting. These are switched on using switch S3.
Saturday, August 3, 2013
Simple Cell Phone Jammer Circuit Diagram 2
A beautiful diy gsm jammer or mobile cell phone jammer schematic diagram for use only in GSM1900 with frequency from 1930 MHz to 1990 MHz. The GSM1900 mobile phone network is used by USA, Canada and most of the countries in South America.
This cell phone jammier is not applicable for use in Europe, Middle East, nor Asia. The GSM jammier circuit could block mobile phone signals which works on GSM1900 band, also called DCS. For more cell phone jammers check the related posts.
Mobile cellphone jammer circuit diagram
Thursday, August 1, 2013
1 W Home Stereo Amplifier Rise
This is a one watt home stereo amplifier module project using the KA2209 IC from Samsung, which is equivalent to the TDA2822. It operates from 3-12V DC & will work from a battery since the dormant current drain is low. It requires no heat sink for normal use. The input & output are both ground referenced. Maximum output will be obtained with a 12V power supply & 8 ohm speaker, however it is suitable for driving headphones from a supply as low as 3V.
The Specifications of the home stereo amplifier :
The Specifications of the home stereo amplifier :
D.C. input : 3 – 12 V at 200 – 500 mA max
Idle current : approx. 10 mA
Power output : > 1 Watt max. 4-8 ohms, 12V DC
Freq. Resp. : approx. 40 Hz to 200 kHz, 8 ohm, G=10
THD : < 1 % @ 750 mW, 4-8 ohm, 12V
Gain : approx. x10 (20 dB) OR x100 (40dB)
S/N ratio : > 80 dB, G = 20 dB
Sensitivity : < 300 mV, G = 20 dB
Input Impedance : approx. 10 k ohm
Idle current : approx. 10 mA
Power output : > 1 Watt max. 4-8 ohms, 12V DC
Freq. Resp. : approx. 40 Hz to 200 kHz, 8 ohm, G=10
THD : < 1 % @ 750 mW, 4-8 ohm, 12V
Gain : approx. x10 (20 dB) OR x100 (40dB)
S/N ratio : > 80 dB, G = 20 dB
Sensitivity : < 300 mV, G = 20 dB
Input Impedance : approx. 10 k ohm
Description
The gain is adjustable from ten to 100, i.e. twenty to 40 dB. Start with feedback resistors R1 and R3 of 1k ohm, this will give a gain of ten which ought to be adequate for most applications. In case you need more gain, you can remove resistors R1 and R3.This will give a gain of about 100, or 40 dB.The input attenuation can be adjusted by the potentiometer which can be used as a volume control. The IC gain ought to be kept as low as necessary to accomplish full output, with the in put potentiometer and your signal source at maximum.
Voltage Gain = 1+ R1/R2 = 1+R3/R4, however the maximum gain with no outside feedback is about 100, or 40dB. (GdB = 20log Gv)
This will keep the signal to noise ratio as high as feasible. Additional gain provided by the amplifier will reduce the S/N ratio by a similar amount, since the input noise figure is constant. Other values for R1 and R3 of between 1k and 10k ohm can be used if an intermediate gain level is necessary.
This will keep the signal to noise ratio as high as feasible. Additional gain provided by the amplifier will reduce the S/N ratio by a similar amount, since the input noise figure is constant. Other values for R1 and R3 of between 1k and 10k ohm can be used if an intermediate gain level is necessary.
If driving a pair of headphones, you may also need a 100 ohm resistor in series with each output to reduce the output level, depending on headphone impedance & sensitivity. Make positive you start with the volume right down to check. Numerous headphones may be driven from the amplifier in the event you wish, since most headphones have at least 16 ohm impedance, or more often 32 ohm.
There are only a few outside parts, the IC contains most of the necessary circuitry. R1,R2 and R3,R4 are the feedback resistors. C1 provides power supply decoupling. C2 and C3 are the input coupling capacitors, which block any DC that might-be present on the inputs. C4,C5 block DC in the feed back circuit from the inverting inputs, and C6,C7 are the output coupling capacitors. C8, R5 and C9,R6 act as Nobel networks providing a high frequency load to maintain stability at frequencies where loud speaker inductive reactant may become excessive. The pot provides adjustable input level attenuation.
Subscribe to:
Posts (Atom)